אליעד כהן
ייעוץ עסקי ואישי
בשיטת EIP
⭐⭐⭐⭐⭐
הדפסה חידה ✔חידת LeetCode Solution - Block Placement Queries, פתרון ליטקוד, LeetCode Solution, לפתור שאלות ב LeetCode, מדעי המחשב, תכנות מחשבים, לעבוד...
הצטרף לחברים באתר!
שם
סיסמא
לחץ כאן
להתחבר לאתר!
💖
הספרים שמומלצים לך:
להצליח בחיים
ולהיות מאושר!






☎️
ייעוץ אישי בכל נושא!
050-3331-331
🖨חידת LeetCode Solution - Block Placement Queries, פתרון ליטקוד, LeetCode Solution, לפתור שאלות ב LeetCode, מדעי המחשב, תכנות מחשבים, לעבוד בהייטק, ללמוד תכנות מחשבים, להיות מתכנת, ללמוד לתכנת, הכנה לראיון טכני, ראיון עבודה בהייטק, שאלות ליטקוד, פיתוח תוכנה, איך לכתוב קוד? ללמוד לכתוב קוד, חידות היגיון, ללמוד לחשוב, ללמוד לנתח דברים, ללמוד לפרק לגורמים, ללמוד לחלק לחלקים, ללמוד למצוא חוקיות, איך לחלק לחלקים? איך למצוא חוקיות? לנתח תהליכים
והפעם נדבר על שאלת 3161. LeetCode - Block Placement Queries הבאה:
There exists an infinite number line, with its origin at 0 and extending towards the positive x-axis.

You are given a 2D array queries, which contains two types of queries:

For a query of type 1, queries[i] = [1, x]. Build an obstacle at distance x from the origin. It is guaranteed that there is no obstacle at distance x when the query is asked.

For a query of type 2, queries[i] = [2, x, sz]. Check if it is possible to place a block of size sz anywhere in the range [0, x] on the line, such that the block entirely lies in the range [0, x]. A block cannot be placed if it intersects with any obstacle, but it may touch it. Note that you do not actually place the block. Queries are separate.

Return a boolean array results, where results[i] is true if you can place the block specified in the ith query of type 2, and false otherwise.

Example 1:

Input: queries = [[1,2], [2,3,3], [2,3,1], [2,2,2]]

Output: [false,true,true]

Explanation:

For query 0, place an obstacle at x = 2. A block of size at most 2 can be placed before x = 3.

Example 2:

Input: queries = [[1,7], [2,7,6], [1,2], [2,7,5], [2,7,6]]

Output: [true,true,false]

Explanation:

Place an obstacle at x = 7 for query 0. A block of size at most 7 can be placed before x = 7.

Place an obstacle at x = 2 for query 2. Now, a block of size at most 5 can be placed before x = 7, and a block of size at most 2 before x = 2.
אז קודם כל נסביר את השאלה שהולכת כך:

נתון לפנינו: ציר קו באורך אין סופי, שמתחיל ב 0 וממשיך ב 1,2,3 וכולי עד אין סוף.

כמו כן נותנים לנו רשימה של שאילתות, שמורכבת מ 2 סוגים של שאילתות:

סוג 1 של שאילתה, אומר לנו לשים "מחסום" בנקודה X בקו שלנו.

סוג 2 של שאילתה, שואל אותנו, האם ניתן לשים על הציר שלנו, "בלוק" ברוחב כלשהו, החל מ 0 ועד לנקודה X כלשהי. כאשר המחסומים שהצבנו בגלל שאילתה מספר 1, מגבילים את היכולת שלנו לשים "בלוקים" במיקום של המחסומים.


שאילתה מסוג 1, מוצגת כך:

queries[i] = [1, x]

כאשר הספרה הראשונה היא 1, זה אומר שמדובר על שאילתה מסוג 1, שאומרת לנו להציב מכשול במקום X כנ"ל. הבהרה: המכשול עצמו תופס 0 מקום.

לדוגמה:

queries[i] = [1, 10]

פירושו, תציב מכשול בנקודה 10 על ציר המספרים. כאשר המכשול עצמו לא תופס מקום.





שאילתה מסוג 2 מוצגת כך:

queries[i] = [2, x, sz]

כאשר הספרה הראשונה היא 2, זה אומר שמדובר על שאילתה מסוג 2, ששואלת אותנו, האם ניתן להציב בלוק ברוחב SZ עד למיקום X

לדוגמה:

queries[i] = [2, 5, 6]

השאילתה שואלת אותנו, האם ניתן להציב בלוק ברוחב 6, החל ממיקום 0 ועד למיקום 5. והתשובה היא, שלא. כי עד למיקום 5, ניתן להציב אך ורק בלוק עד רוחב 5 אך לא יותר מכך.





או לדוגמה:

queries[i] = [2, 5, 3]

השאילתה שואלת אותנו, האם ניתן להציב בלוק ברוחב 3, החל ממיקום 0 ועד למיקום 5. והתשובה היא, שכן. כי עד למיקום 5, ניתן להציב כל בלוק עד רוחב 5.





ואם לדוגמה אמרנו לנו את זה

queries[0] = [1, 10]

queries[1] = [2, 15, 12]

אז השאילתה הראשונה תאלץ אותנו לשים מכשול במקום 10 על גבי הציר. כך:





ואז לא נוכל לשים מכשול ברוחב 12, עד למיקום 15. כי המכשול שנמצא במיקום 10, מגביל אותנו לשים מכשול ברוחב 12 החל ממיקום 0, כי המכשול יתנגש במחסום שיש במיקום 10.





ואם עכשיו ישאלו אותנו:

queries[2] = [2, 10, 9]

דהיינו, האם עד מקום 10, ניתן לשים מכשול ברוחב 9, התשובה תהיה שכן

וגם אם ישאלו

queries[3] = [2, 10, 10]

דהיינו, האם עד מקום 10, ניתן לשים מכשול ברוחב 10, התשובה תהיה שכן

כך:





ואם עכשיו יגדירו לנו

queries[4] = [1, 7]

דהיינו, יבקשו מאיתנו לשים מכשול נוסף גם במקום 7, כך:





הרי שאם ישאלו אותנו עכשיו שוב פעם לדוגמה את זה:

queries[5] = [2, 10, 10]

דהיינו, האם עד מקום 10, ניתן לשים מכשול ברוחב 10, התשובה תהיה שלא. כי מאחר שכבר יש מכשול במקום 7, אז לא ניתן לשים בלוק עד מקום 10

כך:





דהיינו, מה שהיה אפשרי קודם, לשים בלוק ברוחב 10 עד מיקום 10, כי המכשול שנמצא ב 10, לא תופס מקום כנ"ל. ולכן קודם זה כן היה אפשרי. אבל כרגע בגלל שכבר יש מכשול במקום 7, הרי שלא ניתן לשים מכשול ברוחב 10, עד מיקום 10.

חידוד: הצבת המחסומים היא מצטברת. ולכן יתכן שאותה שאילתה מסוג 2, פעם אחת תהיה אפשרית ולאחר מכן היא לא תהיה יותר אפשרית, מאחר שהוגבלנו על ידי הצבת מחסום כלשהו.


ובהינתן לדוגמה הגדרת המכשולים האלו:





אז אם נשאל, האם ניתן ממקום 0 ועד מקום 17, לשים מכשול ברוחב 5? התשובה תהיה שכן, כי ניתן לשים את המכשול, בטווח שבין 3 לבין 9 כך:





אז מה בעצם שואלים אותנו?

אז השאלה הולכת כך: נותנים לנו רשימה של שאילתות, חלקן מסוג 1, דהיינו, שאילתות שמגדירות לנו היכן למקם מחסומים. כמו כן חלק מהשאילתות, הן מסוג 2, דהיינו, הן שואלות אותנו, האם בהתאם למחסומים שהצבנו עד כה על גבי ציר המספרים, האם עד כה ניתן למקום את הבלוק ברוחב מוגדר כלשהו, עד למיקום X כלשהו.

כאשר כל שאילתה מסוג 2, עומדת בפני עצמה. דהיינו, לצורך העניין אחרי שמציבים בלוק ברוחב כלשהו, מסירים אותו. והוא לא מגביל את הצבת הבלוק הבא.

וכנ"ל, הצבת המחסומים היא מצטברת. ולכן יתכן שאותה שאילתה מסוג 2, פעם אחת תהיה אפשרית ולאחר מכן היא לא תהיה יותר אפשרית, מאחר שהוגבלנו על ידי הצבת מחסום כלשהו.

ובעצם השאלה היא, בהינתן לנו רשימת שאילתות, עלינו להחזיר תשובה של: אפשרי או לא אפשרי, עבור כל אחת מהשאילתות מסוג 2 כנ"ל.


ולכאורה, זאת התשובה לשאלת הליטקוד הזאת, היא מאוד מאוד מאוד פשוטה. כי בתכלס, אפשרי לקחת נייר ולרשום את כל המחסומים. וכאשר שואלים אותנו, האם ניתן להציב בלוק ברוחב כלשהו, עד למיקום X, בסך הכל נצטרך לבדוק מ 1 ועד X, האם יש את הרוחב הרצוי להצבת הבלוק.

כך שמצד האמת, התשובה לשאלת ליטקוד הזאת היא מאוד פשוטה. אז מהי בעצם השאלה? ולמה השאלה הזאת, נחשבת לשאלת ליטקוד מאוד מאוד קשה?

והתשובה היא, שעיקר השאלה היא, איך לעשות את החישובים הנ"ל בצורה יעילה. כי לבדוק בכל פעם של שאילתה מסוג 2, החל מ 1 ועד X, האם קיים רוחב SIZE כלשהו, זה פתרון שבמאה אחוז עובד, אבל ממש לא יעיל.

למה הוא לא יעיל? ממגוון רחב מאוד של סיבות. כי נניח שישאלו אותנו, האם ניתן להציב עד מיקום 100,000,000 בלוק ברוחב 13,522. ונניח שעד מיקום 100,000,000 יש לנו 9,999 מכשולים במקומות שונים. האם באמת הגיוני שאנחנו נצטרך עכשיו לספור 100,000,000 מקומות, כדי לדעת אם אפשרי או לא אפשרי להציב את המכשול ברוחב SIZE עד למיקום X? זה כנראה מתיש ולא יעיל...

ולכן מהות השאלה היא, מהי הדרך היעילה ביותר כדי לתת תשובה לשאילתה מסוג 2. זאת מהות השאלה.


אז חלק גדול מהפתרונות שהוצעו לשאלה הזאת, עובדים עם לוגיקה של segment tree. דהיינו, מבנה נתונים מסוג "עץ מקטעים" ולא ניכנס כאן כרגע לכיוון הזה של הפתרון. אבל אני כן אציג בדרך של מחויב ואפשרי, מה בטוח נכון, לחלק לחלקים וכולי, כיצד ניתן לפתור את השאלה הזאת...


אז איך ניגשים לשאלה הזאת? איך מנסים למצוא פתרון יותר יעיל לשאלה הזאת.

אז נתחיל בפתרון הכי לא יעיל שיש וממנו ננסה לשפר. אז מהו הפתרון הכי לא יעיל. הפתרון הכי לא יעיל יהיה, שעלינו לעבור מיקום מיקום, החל מ 1 ועד X, ולנסות למצוא SIZE מקומות פנויים בלי מכשולים באמצע. כאשר אם הגענו למכשול ועדיין לא הגענו לרוחב SIZE, אז עלינו להתחיל את הספירה של המיקומים מחדש. עד שנגיע למספר X או עד שנמצא מיקומים ברוחב SIZE פנויים. ואז נוכל לדעת אם אפשרי או לא אפשרי להכניס בלוק ברוחב SIZE עד למיקום X.

ובמילים אחרות, הפתרון הכי לא יעיל, יהיה לעבור מיקום מיקום אחד אחד מההתחלה ועד X כנ"ל.

ואיך ניתן לשפר את הפתרון הזה בדרך יחסית יעילה?

נוכל לשאול את עצמנו, מה בטוח נכון. דהיינו, בכל פעם שיגדירו לנו לשים מכשול במיקום כלשהו, אנחנו נכתוב לנו את הרוחב הפנוי שיש בין מכשול למכשול כך:





וכך במקום לעבור מיקום מיקום ולחפש רוחב כלשהו של מקומות פנויים, פשוט נעבור על הגדלים של הטווחים שיש בין מכשול למכשול, וככה בעצם כבר חסכנו לעצמנו המון פעולות חיפוש...

אבל האם באמת זאת הדרך היעילה ביותר? האם באמת בכל פעם נצטרך לעבור על כל הטווחים של כל המכשולים, בכל פעם מחדש מההתחלה ועד X?

אז איך נתקדם מכאן?

אז אם נתבונן נראה, שבעצם אנחנו מחפשים למצוא דרך, איך נוכל בדרך הקצרה ביותר, לדעת, על מיקום כלשהו בציר המספרים שלנו, מהו הטווח הגדול ביותר שניתן להציב בתוכו בלוק ברוחב כלשהו. ואיך ניתן לעשות זאת בכמה שפחות פעולות.

לדוגמה: נניח ששואלים אותנו האם עד מיקום 1M ניתן להציב מכשול ב SIZE של 2000 כאשר יש לנו 5000 מכשולים שונים.

אז, בדרך הארוכה ביותר, היינו יכולים לעשות במקרה הגרוע ביותר 1M פעולות, כדי לעבור על כל המקומות ברשימת המספרים.

בפתרון הקודם שהצענו, הרי שאם יש לנו 5000 מכשולים, הרי שיש לנו 5000 טווחים של גדלים שבהם ניתן להכניס בלוקים ברוחב כלשהו. והרי שכך במקרה הגרוע ביותר נרוץ על 5000 מכשולים שונים, עד שנגלה אם אפשרי או לא אפשרי להכניס את הבלוק ברוחב 2000 הנדרש כנ"ל.

אבל האם זה הכרחי, לרוץ על 5000 טווחים, החל מהטווח הראשון ועד האחרון? אולי יש דרך שנוכל לסמן לנו בכל מיקום, מהו הטווח הגדול ביותר שניתן להכניס אליו בלוקים, עד אותו מיקום? האם יש אפשרות כזו? איך מבצעים אותה?


אז עקרונית, בכל פעם שנותנים לנו הגדרה של מכשול כלשהו, אנחנו יכולים לעבור על כל רשימת המיקומים, החל ממיקום 1 ועד למיקום של המכשול האחרון, ולסמן לעצמנו על כל מיקום, מה הרוחב המקסימאלי שיכול להיכנס עד אותו המיקום. לדוגמה כך:





הדרך הזאת, תהיה מאוד יעילה עבור החיפושים עצמם, כי בתוך שניה נוכל לדעת מהו הרוחב המקסימאלי שניתן להכניס עד למיקום X. החיסרון של הדרך הזה יהיה, שנצטרך לעדכן בכל פעם מחדש את כל המיקומים שמושפעים מכל מכשול חדש.

נניח בדוגמה הנ"ל, שיוסיפו לנו עוד מכשול במיקום 7, הרי שנצטרך לעדכן מחדש את כל הרשימה כך:





מה שאומר בעצם, שבדרך הפתרון הזו, אנחנו נעשה המון פעולות מסוג עדכון שיעזרנו לנו אומנם בפעולות מסוג חיפוש, אבל עדיין יקשו עלינו לעשות המון פעולות עדכון.

ונחדד, נניח שנבחר באפשרות של לשמור בכל מיקום כולל כל מיקום, את הרוחב המקסימאלי האפשרי עד לאותו מיקום, הרי שעדיין נצטרך לשאול את עצמנו, מה תהיה הדרך היעילה ביותר לעדכן את כל המיקומים בכל פעם מחדש. וזאת גם שאלה בפני עצמה.


אז אולי אפשרי שנקצר את פעולות העדכון בדרך הבאה: אולי במקום לעדכן את כל המיקומים עצמם, אולי נוכל לעדכן בכל פעם מחדש, את כל המיקומים של המכשולים בלבד, לדוגמה כך:





דהיינו, אולי ננסה לשמור על גבי כל מיקום של כל מכשול, את הרוחב המקסימאלי האפשרי שקיים עד אותו המכשול.

ונחדד, נניח שנבחר באפשרות של לשמור רק בכל מיקום של מכשול, את הרוחב המקסימאלי האפשרי עד לאותו מכשול, הרי שעדיין נצטרך לשאול את עצמנו, מה תהיה הדרך היעילה ביותר לעדכן את כל המיקומים של המכשולים בכל פעם מחדש. וזאת גם שאלה שאנחנו צריכים להתבונן בה.


אז איך בעצם ניגש לזה?

ונחדד: יש לנו כאן 2 סוגים של שאילתות. שאילת 1 של הגדרת מכשולים. ושאילתה 2 של בקשת מידע בהתאם להגדרת המכשולים.

וזה בעצם אומר, שיש לנו כאן כמה תהליכים נפרדים:

נניח לדוגמה שנתון לנו הציר הבא, עם החישובים הבאים:





אז יכולים להיות לנו כמה תהליכים, לדוגמה:

תהליך 1 - הגדרת המכשול במיקום X

לדוגמה: שים מכשול חדש במיקום 9





תהליך 2 - הגדרת טווח רוחב אפשרי מעודכן, מצד ימין ומצד שמאל של המכשול החדש





תהליך 3 - עדכון רוחב הטווח המקסימאלי בכל מיקום של מכשול כנ"ל





תהליך 4 - חישוב של האם ניתן לשים מכשול ברוחב כלשהו, עד למיקום X, בהתאם לרשימת הטווחים המקסימאלית עד לכל מכשול, כנ"ל בתהליך 3.

דהיינו, אם עכשיו לדוגמה ישאלו אותנו, האם ניתן לשים מכשול עד לנקודה 17 ברוחב 5, הרי שנצטרך לבצע את החישוב, לפי המידע שיש לנו על המכשול שנמצא במיקום 14 כנ"ל. והתשובה תהיה שכן.

או אם לדוגמה ישאלו אותנו, האם ניתן עד מיקום 12 לשים מכשול ברוחב 6, נצטרך לבצע את החישוב בהתאם למכשול שנמצא במיקום 9, והתשובה תהיה כן, כנ"ל.

וגם תהליך 4 עצמו, מורכב מכמה חלקים.

חלק 1 - לאתר את המכשול הקרוב ביותר לנקודה שעליה אנחנו נשאלים.

חלק 2 - לבצע את החישוב כדי למצוא תשובה למה ששאלו אותנו, על בסיס המידע שיש לנו על המכשול שמצאנו. (כי את המידע אנחנו שומרים על המכשול ולא על כל מיקום בפני עצמו).

ובאופן כללי יש כאן כל מיני תהליכים נוספים, כגון של:

1 - ניהול הרשימה של המכשולים

2 - לוודא שרשימת המכשולים ממויינת, בהתאם למיקומים של המכשולים על גבי הציר ולא לפי סדר ההכנסה שלהם לרשימה.

3 - לוודא שבכל מיקום של כל מכשול, נשמר עליו המידע של המיקום שלו על גבי הציר, של הטווח שלו מהמכשול שתחתיו, של הטווח המקסימאלי האפשרי עד אליו וכיו"ב.

דהיינו, יש כאן כל מיני תהליכים שונים.


כמו כן אציין, שיש כל מיני מקרי קצה, שאפשרי לפתור אותם יחסית בקלות, אבל אני בוחר שלא להתייחס אליהם כרגע.

לדוגמה, שלא משנה מה, תמיד לא תהיה אפשרות להכניס בלוק ברוחב SIZE אם הרוחב גדול מהמיקום עצמו. לדוגמה, לא ניתן להכניס בלוק ברוחב 100, עד מיקום 99 וכיו"ב.

או לדוגמה, שתמיד תהיה אפשרות להכניס בלוק ברוחב SIZE אם X גדול מהמיקום של המכשול האחרון + SIZE. לדוגמה, תהיה אפשרות להכניס מכשול ברוחב 10, למיקום 100, אם המכשול הגדול ביותר נמצא במיקום 70.

או כל מיני חישובים מהירים כאלו ואחרים, שאם יש 2 מכשולים בלבד, ברוחב כלשהו, הרי שמכך נוכל להסיק ששום רוחב לא יהיה קטן או גדול מ רוחב כלשהו וכיו"ב. לדוגמה 2 מכשולים על רוחב 1000, לא יוכלו לחסום את כל הבלוקים שהם ברוחב 100.

בקיצור, יש גם כל מיני מקרי קצה שאני לא רוצה להיכנס אליהם כרגע.

יש גם עניין של אפשרות להסיק מהשאילתות מסוג 2 הקודמות לשאילתה הנוכחית, במידה ולא היו שאילתות מסוג 1 ביניהן. לדוגמה, אם שאלו אותנו שאלה על מיקום 1000, ומיד אחר כך שאלו אותנו שוב שאלה על מיקום 1000 או אולי על מיקום 2000, אולי נוכל להסיק מהשאילתה הקודמת על השאילתה הנוכחית וכיו"ב. דהיינו, כל מיני מקרים פרטיים ולוגיקות ספציפיות.


כמו כן אני אוסיף, כי מאחר שיש כאן כל מיני תתי תהליכים, הרי שברמת העיקרון אפשרי לשקול מתי לבצע את פעולת ה עדכון של הטווח המקסימאלי האפשרי. האם לבצע אותו אחרי כל שאילתה מסוג 1. או אולי לפני כל שאילתה מסוג 2.

או אולי זה בכלל יהיה קשור למיקום של העדכון של 1, ביחס לשאילתה של 2. לדוגמה שאילתה מסוג 1 על מיקום 1000, לא תשפיע על שאילתה מסוג 2 על מיקום 500.

וזה קשור גם לכמות השאילתות מסוג 1 ומסוג 2. וגם קשור להאם השאילתות מסוג 1 רצופות אחת אחרי השניה או לא. כי לדוגמה, אפשרי אולי לבצע פעולת עדכון אחת, אחרי כמה שאילתות מסוג 1 של הצבת מכשולים.

בקיצור, יש כאן כל מיני זוויות והיבטים לתקוף את הנושא הזה.

אבל כרגע אני בוחר להתמקד בעניין של תהליך העדכון של הטווח המקסימאלי האפשרי, עד למיקום X.

דהיינו, ננסה למצוא דרך פשוטה איך אפשרי לעדכן יחסית בקלות, את כל המכשולים שהוצבו, בטווח ברוחב המקסימאלי, עד לאותו המכשול.

כאשר בעצם מהות השאלה היא, איך ניתן לחשב במיקום של מכשול X, את הרוחב המקסימאלי האפשרי עד לאותו המיקום, בדרך הקלה ביותר, לעדכן את המידע הזה.

אז איך ניגשים לזה?


אז כדי לדעת איך לפתור את הבעיה, לשם כך עלינו לנסות לחלק את הבעיה לחלקים הכי קטנים שיש, לחפש מה בטוח נכון, לנסות למצוא חוקיות, ואחר כך לנסות לחשוב על נוסחה ופתרון.

אז כמו שאמרנו כרגע ננסה להתמקד אך ורק בלנתח, איך הכי נכון לעדכן את רשימת המכשולים, במידע של מהו הטווח ברוחב המקסימאלי, עד לאותה נקודת מכשול.

כי כמו שאמרנו, יש כאן כל מיני תהליכים. ואחד התהליכים הוא, להחזיק רשימה של מהו הטווח המקסימאלי, עד לנקודה X. כדי לחסוך לנו לחפש בכל פעם מחדש מהתחלת הציר ועד ל X, את הטווח המקסימאלי. ולשם כך, נרצה להחזיק את הטווח המקסימאלי עד לנקודה X.

וכמו שאמרנו, יש אפשרות לנסות להחזיק את המידע, עבור כל הנקודות בציר גם כאלו שאין בהן מכשול כלשהו. ויש גם אפשרות לנסות להחזיק את המידע הזה, רק עבור הנקודות שבהן נמצא מכשול על גבי הציר.

ואני מפריד בין השאלות של: האם מתי כמה ולמה לעדכן את המידע של מהו הטווח המקסימאלי עד לנקודת מכשול כלשהי, לבין השאלה של איך לעדכן בצורה הכי יעילה את המידע הזה, של מהו ה MAX RANGE עד למכשול כלשהו. ומהמידע הזה, נוכל ללמוד על כל נקודה אחרת בציר, שאין בה מכשול.

כמו כן, אני עושה הפרדה בין השאלה של איך לנהל בפועל את הרשימה של המכשולים. כי גם את זה צריך לעשות, לדוגמה: צריך לוודא שהרשימה תהיה ממוינת לפי המיקום של המכשולים על גבי הציר ולא לפי סדר הצבת המכשולים. וכרגע לא נתמקד בזה, אלא רק באיך לעדכן את רשימת המכשולים.

כמו כן, אנחנו נניח שננהל את הרשימה עצמה, בתוך מבנה של רשימה פשוטה ורגילה. ולא בצורה של עץ טווחים (segment tree) שזה עוד נושא בפני עצמו.

ולכן נשאל: נניח שאנחנו רוצים לנהל רשימה של כל המכשולים בצורה של רשימה ולא של עץ או של משנה אחר. ונניח שהרשימה הזאת של המכשולים, ממוינת לפי סדר המכשולים על גבי הציר. ונניח שאנחנו רוצים בכל פעם לעדכן אותה, במידע של מהו הטווח המקסימאלי, שאפשרי להציב בלוק, החל מהתחלת הציר ועד לנקודת מכשול כלשהי, אז כיצד יהיה הכי יעיל לעשות את זה?


אז לשם כך נתחיל לחלק לחלקים לחלק הקטן ביותר, והוא כמובן יהיה ציר ריק בלי שום מכשולים כלשהם. זהו כמובן המקרה הפשוט ביותר. כך:





אז לצורך העניין נתבונן על ציר ריק ללא מכשולים, ונשאל: מהו גודל הבלוק המקסימאלי שניתן להציב עד נקודה מספר 1? תשובה: בלוק ברוחב של 1.

ועד נניח למיקום 7, איזה גודל מקסימאלי של בלוק, ניתן להציב? תשובה: 7. כי עד מיקום 7, לא ניתן להכניס בלוק יותר רחב מהרוחב של המיקום הנוכחי.

במילים אחרות, לצורך העניין ניתן לדמיין שיש לנו בלוק בנקודה 0, שמגביל אותנו לכך שלא נוכל להכניס עד נקודה X, שום מכשול שהוא יותר גדול מנקודה X.





עד כאן זה משהו שהוא הכי פשוט שיש ושהוא בטוח נכון.


ומה נוכל להסיק מכך שהוא בטוח נכון, על מקרה שהוא קצת יותר מורכב?

תשובה: מכך נוכל להסיק לגבי מקרה של ציר, שיש עליו רק מכשול 1 בלבד. לדוגמה מכשול 1 בלבד במיקום 5:





נוכל להסיק בוודאות, כי כאשר מגדירים לנו את המכשול הראשון, אנחנו יכולים לדעת בוודאות של מאה אחוז, שעד המכשול הראשון, לא ניתן להכניס שום בלוק, שהוא גדול יותר מהמיקום של המכשול הראשון.

לדוגמה: אם המכשול הראשון הוא במיקום 5, הרי שמכך נובע, שעד המכשול הראשון במיקום עד, הטווח והגודל המקסימאלי של בלוק שניתן להכניס, יהיה בגודל 5 בלבד.

ולכן מכך נובע, שכאשר יתנו לנו את המכשול הראשון, נרשום לידו, שה MAX RANGE המקסימאלי עד אליו, הוא המיקום של אותו X כנ"ל.


עכשיו נתבונן רגע אחד על המקרה הקודם, ונשאל: מה יהיה גודל הטווח המקסימאלי שניתן להכניס עד 6, שנמצא אחרי המיקום של המכשול היחיד הנ"ל במיקום 5?

תשובה: ניתן להכניס בלוק...
לראיין לפתור שאלות ב leetcode חידת היגיון איך להחזיר ניהול לפתח איך לחשב דרך יחסית מבצעים להתראיין התורה כולה leetcode leetcode solution איך להיות מתכנת איך להתראיין איך לחלק לחלקים איך לכתוב איך לכתוב קוד איך ללמוד איך ללמוד לכתוב קוד איך ללמוד לתכנת איך ללמוד תכנות איך ללמוד תכנות מחשבים איך למצוא חוקיות איך לנתח איך לנתח דברים איך לנתח תהליך איך לנתח תהליכים איך לפרק לגורמים איך לפתור איך לפתור שאלות איך לפתור שאלות ב leetcode איך לראיין איך לראיין עובד איך לראיין עובדים איך לשאול שאלות במה לעבוד בשביל מה לשאול שאלות היגיון הייטק הכנה לראיון הכנה לראיון טכני חוקיות חידה חידות חידות היגיון חידת leetcode חידת היגיון חשיבה מדעית טכני לגורמים להיות מתכנת להתראיין לחלק לחלקים ליטקוד לכתוב לכתוב קוד ללמוד ללמוד לחלק ללמוד לחלק לחלקים ללמוד לחשוב ללמוד לכתוב ללמוד לכתוב קוד ללמוד למצוא ללמוד למצוא חוקיות ללמוד לנתח ללמוד לנתח דברים ללמוד לפרק ללמוד לפרק לגורמים ללמוד לתכנת ללמוד תכנות ללמוד תכנות מחשבים למידה למצוא חוקיות לנתח לנתח דברים לנתח תהליך לנתח תהליכים לעבוד לעבוד בהייטק לפרק לפרק לגורמים לפתור לפתור שאלות לפתור שאלות ב leetcode לפתח לראיין לראיין עובד לראיין עובדים לשאול שאלות לתכנת מדע מדעי המחשב ממי ללמוד עבודה עבודה בהייטק פיתוח פיתוח תוכנה פתרון פתרון ליטקוד ראיון ראיון טכני ראיון עבודה ראיון עבודה בהייטק ראיונות שאלות ליטקוד תהליך תהליכים תכנות תכנות מחשבים
ניתוח חידת היגיון, חידת 5 קלפים, חידת קלפים, חידת היגיון, איך לנתח חידה? איך למצוא פתרון? לוגיקה, חשיבה מופשטת, חלק 2
ניתוח חידת היגיון, חידת 5 קלפים, חידת קלפים, חידת היגיון, איך לנתח חידה? איך למצוא פתרון? לוגיקה, חשיבה מופשטת, חלק 2
ניתוח חידת היגיון, חידת 5 קלפים, חידת קלפים, חידת היגיון, איך לנתח חידה? איך למצוא פתרון? לוגיקה, חשיבה מופשטת, חלק 2 איך ניתוח חידות היגיון ושיטות פתרון מעורבות בחשיבה מופשטת? בהרצאה זו, אליעד כהן מסביר כיצד ניתן לנתח חידות היגיון בצורה שמובילה לפתרון. הוא מתמקד בחידת הקלפים, שהיא חידת היגיון שדורשת חשיבה מופשטת ויכולת להפריד בין פרמטרים שונים על מנת למצוא את הפתרון. ההסבר מתחיל בכך שלחפיסה של ... יהלום, לב או תלתן. אליעד מדגיש שצריך להתמקד רק בשני פרמטרים אלה ולוודא שהבננו כיצד הם משפיעים על פתרון החידה. לדוגמה, אם אנחנו צריכים לזהות את המספר 11, יש לבחור מתוך 24 אפשרויות שמייצגות את המספר והצורה. הוא מסביר ... אמיתיים. בהמשך הוא מציין שחשוב להבין כיצד להתמודד עם בעיות מורכבות שדורשות ניתוח מעמיק ומופשט. אליעד נותן דוגמה של חידה שבה יש צורך למצוא פתרון לשני פרמטרים בו זמנית, כמו מספר שמייצג גם את המספר וגם את הצורה. הוא מדבר על האפשרויות השונות להתמודד עם תצורות כאלו ומסביר כיצד חידות מסוג זה מצריכות עבודה עם כמות גדולה של נתונים כדי למצוא את הפתרון המושלם. בסופו של דבר, אליעד מסביר על אופן ההתמודדות עם חידות פרדוקסליות שדורשות יותר מניתוח פשוט. הוא מציין שכשיש לנו תשובות מנוגדות, כמו לדעת בוודאות שאנחנו קיימים ובוודאות שאנחנו לא קיימים, זה יכול להוביל לתובנות חדשות על התודעה שלנו ועל האופן שבו אנו תופסים את המציאות. חידות היגיון איך לנתח חידות? פתרונות לחידות חשיבה מופשטת ניקוד קלפים בחידת קלפים הקסם של אינדיאן רובה
ניתוח חידת היגיון, חידת 5 קלפים, חידת קלפים, חידת היגיון, איך לנתח חידה? איך למצוא פתרון? לוגיקה, חשיבה מופשטת, חלק 1
ניתוח חידת היגיון, חידת 5 קלפים, חידת קלפים, חידת היגיון, איך לנתח חידה? איך למצוא פתרון? לוגיקה, חשיבה מופשטת, חלק 1
ניתוח חידת היגיון, חידת 5 קלפים, חידת קלפים, חידת היגיון, איך לנתח חידה? איך למצוא פתרון? לוגיקה, חשיבה מופשטת, חלק 1 איך ניתן לנתח חידת היגיון של חמישה קלפים? החידה עוסקת ב - חבילת קלפים שמורכבת מחמישה קלפים, כאשר המטרה היא לגלות את הקלף החמישי על פי סדר ארבעת ... המשתתפים לסדר ארבעה קלפים מסוימים בסדר מסוים כך שמהסידור הזה יוכלו לנחש את הקלף החמישי. מהם שלבי הניתוח של החידה? כדי להמשיך בניתוח, הוצגו כמה צעדים שאותם יש לבצע על מנת לנסות ולחזות את הקלף החמישי: יש לסדר את ... מוגדר על פי פרמטרים כגון צבע, צורה ומספר. האם אפשר לשדר את ארבעת הקלפים כך שיתאים גם לכל המאפיינים? כשהחידה מתקדמת, עולה השאלה כיצד ניתן לשדר את ארבעת הקלפים באופן כזה שיביעו את המידע הדרוש לניחוש הקלף החמישי. אחת ... שבקלפים. ישנם 24 סידורים שונים של ארבעה קלפים, והתוצאה הסופית תלויה באלו פרמטרים תבחר להתמקד בהם. מה השאלה המרכזית בחידה? החידה מתמקדת בהבנה של המאפיינים של הקלף החמישי. השאלה העיקרית אינה רק מהו הקלף החמישי? אלא גם כיצד אנו מזהים אותו מתוך שלושה פרמטרים עיקריים (צבע, צורה ומספר). הסיפור סביב החידה הוא כיצד ניתן להשתמש במאפיינים של ארבעה קלפים כדי לנחש את המאפיינים של הקלף החמישי. איך נעבוד עם חבילת ... שיביא לאפשרויות רבות יותר לכל סידור של קלפים. הרעיון המרכזי הוא שעליך להתחשב בכמה שיותר פרמטרים שונים בעת ניתוח החידות. לסיום, נמצא שפתרון החידה תלוי מאוד בהבנה של שלושה פרמטרים עיקריים בכל קלף, ושעשוי להיות הרבה מאוד וריאציות אפשריות, תלוי באילו פרמטרים תבחר להדגיש. חידת היגיון חמישה קלפים? לוגיקה וחשיבה מופשטת איך לנתח חידה? סידור קלפים בעזרת פרמטרים מגוון וריאציות בסידור קלפים
ניתוח חידת היגיון, חידת 5 קלפים, חידת קלפים, חידת היגיון, איך לנתח חידה? איך למצוא פתרון? לוגיקה, חשיבה מופשטת, חלק 3
ניתוח חידת היגיון, חידת 5 קלפים, חידת קלפים, חידת היגיון, איך לנתח חידה? איך למצוא פתרון? לוגיקה, חשיבה מופשטת, חלק 3
ניתוח חידת היגיון, חידת 5 קלפים, חידת קלפים, חידת היגיון, איך לנתח חידה? איך למצוא פתרון? לוגיקה, חשיבה מופשטת, חלק 3 איך לנתח חידת היגיון עם קלפים? ההרצאה עוסקת בפתרון חידת היגיון עם חבילת קלפים, חידת 5 קלפים, שבה הקוסם או העוזר של הקוסם יודע לנחש את הקלף החמישי שבחר אדם, מבלי שיראה אותו. ישנו ... חמישה קלפים מתוך חבילת קלפים רגילה של 52 קלפים, והעוזר של הקוסם יודע לנחש את הקלף החמישי. הסוד מאחורי חידת הקסם הוא ביכולת להעביר את המידע על הקלף החמישי באמצעות ארבעה קלפים בלבד, ובכך להפתיע את הצופה. החידה מתחילה בכך שלוקחים חבילה רגילה של 52 קלפים, שמחולקת לארבע צורות: יהלום, לב, טלתן ואלום, כאשר כל צורה מופיעה ... בצעד אחד ועוד 6 צעדים, בקוד נעלם. - היכולת למיין את הקלפים לפי סדר ערכים. האם יש פתרונות אחרים לחידה? האם ישנם עוד פתרונות אפשריים לגילוי הקלף החמישי? למרות שהצורה נשמעת פשוטה, השאלה נוגעת גם לאיך משדרים את הצעד המדויק ביותר. תהליך חידת הקסם מחייב עבודה נכונה בשימוש במידע בצורה מסודרת ומאורגנת. חידת קלפים חשיבה לוגית חידת היגיון הסוד מאחורי חידות קסם איך לנחש את הקלף החמישי? חשיבה מופשטת
עזרה בקבלת החלטה, האם להמשיך בלימודים? חוסר ריכוז בלימודים, הדבר הכי קשה, לא לפחד משעמום, לימודים אקדמיים, תואר ראשון, ללמוד או לעבוד
עזרה בקבלת החלטה, האם להמשיך בלימודים? חוסר ריכוז בלימודים, הדבר הכי קשה, לא לפחד משעמום, לימודים אקדמיים, תואר ראשון, ללמוד או לעבוד
... הוא מוצא את זה לא מעניין, במיוחד כאשר החיים המהירים והלחצים מהמציאות לא מאפשרים לו להיכנס לעומק של כל חידה או בעיה שמופיעה במהלך הלימודים. לעיתים, הוא מרגיש שהסביבה הלימודית לא מתאימה לו, כשהוא מדבר על כך שלפעמים הוא מרגיש שזה כמו חידה פיזיקלית שאין לו עניין להתרכז בה, במיוחד אם יש לו תחושת לחץ כלפי דברים אחרים. הנושא השני שהוא עוסק ...
מה לעשות כשלא יודעים מה לעשות? מה לעשות כשאין מה לעשות? מה בטוח נכון? מה וודאי? קבלת החלטות בתנאי אי וודאות, לא יודע מאיפה להתחיל, לא יודע מה לעשות עם עצמי, האם להתגרש? איך לקבל החלטה מתוך אי וודאות? איך להחליט?
מה לעשות כשלא יודעים מה לעשות? מה לעשות כשאין מה לעשות? מה בטוח נכון? מה וודאי? קבלת החלטות בתנאי אי וודאות, לא יודע מאיפה להתחיל, לא יודע מה לעשות עם עצמי, האם להתגרש? איך לקבל החלטה מתוך אי וודאות? איך להחליט?
... לבצע משימה אחרת, זה ודאי שהיא קודמת. אם יש פעולה שאין לך ספק לגביה, התחל ממנה. דוגמה לכך היא חידה עם צורות שבה הפתרון היה למצוא את הרכיב שחזר על עצמו בכל האפשרויות ולבסס את ההחלטה על מה שבטוח ... יודע כשיש לך ספקות. ש: חוץ מזה אין לו ספקות. אליעד: לא זה לא נכון אתם זוכרים שפעם הייתה חידה של צורות שלה היה פתרון אז מה אמרתי אמרתי בא ניקח מה בטוח נכון בטוח נכון שצד ימין למטה ...
הכנה לפסיכומטרי, חשיבה לוגית, חשיבה מילולית, ניתוח משפטים, ניתוח טקסטים, הסקה לוגית, שיעור בלוגיקה, הסקת מסקנת, למצוא הנחות יסוד חסרות, מי שבפייסבוק אין לו חיים? מי שעושה שמח הוא תימני? הסקה מילולית
הכנה לפסיכומטרי, חשיבה לוגית, חשיבה מילולית, ניתוח משפטים, ניתוח טקסטים, הסקה לוגית, שיעור בלוגיקה, הסקת מסקנת, למצוא הנחות יסוד חסרות, מי שבפייסבוק אין לו חיים? מי שעושה שמח הוא תימני? הסקה מילולית
... מתוך הנחות יסוד, והבנת מבנה של בעיות לוגיות, במיוחד בתחום הפסיכומטרי. במהלך ההרצאה, אליעד כהן מבצע ניתוחים מעמיקים של חידות לוגיות ומדגים את הצעדים הנדרשים לפתרונן. כיצד פותרים בעיות לוגיות בהסקה מילולית? בהרצאה, אליעד מתחיל עם הצגת חידה שבה ישנם שני נתונים עיקריים: 1. אין חיים למי שבפייסבוק. 2. אם אתה עושה שמח, אז אתה תימני. הוא ... אם יש טענה שכל מי שיש לו תרנגול שותה חלב, אליעד מציין כי טענה כזו לא רלוונטית במקרה של חידה לוגית כזו. בהמשך, הוא מבצע ניתוח נוסף, שבו הוא מציין כי יש לבחון כל טענה בצורה ביקורתית. למשל, אם ... שמח כי אין לו חיים. איך מבצעים חיבור בין הנחות יסוד? בהרצאה אליעד מדגיש כי אחד הצעדים הקריטיים בפתרון חידות לוגיות הוא יצירת חיבורים בין הנחות יסוד. הוא מבצע חיבור בין הנתונים כך שבסופו של דבר ניתן להסיק שההנחה ... יכול להיות בפייסבוק. מהם הכלים להסקה לוגית נכונה? כחלק מהסבר על פתרון בעיות לוגיות, אליעד מציע גישה שונה לפתרון חידות. במקום לבדוק כל טענה בנפרד, הוא מציע לבדוק את הקשרים והחיבורים בין הנתונים הקיימים, ולפסול את האפשרויות שמובילות למסקנות ... מציע דרך יעילה בה ניתן ליצור חיבורים בין כל הנתונים וההנחות בסדר מדויק. הוא ממליץ להיצמד למבנה הלוגי של החידה ולהשתמש בהנחות יסוד בצורה מדויקת כדי להסיק את המסקנות בצורה נכונה. הסקה לוגית פתרון בעיות פסיכומטרי הנחות יסוד חידות לוגיות הסקה מילולית
התרגשות בחיים, להתרגש מדברים, ליצור ריגוש, להתחדש, התחדשות, ליצור הנאה
התרגשות בחיים, להתרגש מדברים, ליצור ריגוש, להתחדש, התחדשות, ליצור הנאה
... וכך לחוות מחדש משהו שכבר מוכר. האם ניתן ליהנות שוב מדברים שאהבנו בעבר? אליעד כהן מביא דוגמה נוספת על חידה שילד הצליח לפתור בעבר ונהנה מכך. כאשר הוא מתבגר, אם יתבקש לפתור שוב את אותה החידה, הוא כבר לא יחווה את אותה התרגשות. זאת משום שההנאה תלויה במילוי החיסרון שהיה קיים בפעם הראשונה. ברגע שהחיסרון ...
עבודה משעממת, לא להשתעמם בעבודה, למצוא עניין בעבודה, למצוא עניין בכל דבר, לפתח את השכל, עבודה לא מעניינת, למצוא עניין בדברים
עבודה משעממת, לא להשתעמם בעבודה, למצוא עניין בעבודה, למצוא עניין בכל דבר, לפתח את השכל, עבודה לא מעניינת, למצוא עניין בדברים
... לשעמום כי האדם מתמקד רק בתוצאה המיידית, שממילא חולפת. לעומת זאת, אם הוא יתייחס לפעולה של ניקוי הרצפה כאל חידה שכלית, וישאל את עצמו: מהי הדרך הכי טובה והכי יעילה לנקות את הרצפה? האם הכלי שאני משתמש בו כרגע ...
איך לפתח את המוח? איך להיות חכם מכל דבר? איך למצוא עניין בכל דבר? איך ליהנות מכל דבר? איך לראות את החיים כמשחק חשיבה? איך ללמוד מכל דבר? איך לראות את החיים כחידת היגיון? איך לפתח את השכל? איך לא להשתעמם? איך ליהנות מכל דבר?
איך לפתח את המוח? איך להיות חכם מכל דבר? איך למצוא עניין בכל דבר? איך ליהנות מכל דבר? איך לראות את החיים כמשחק חשיבה? איך ללמוד מכל דבר? איך לראות את החיים כחידת היגיון? איך לפתח את השכל? איך לא להשתעמם? איך ליהנות מכל דבר?
... דבר? איך ליהנות מכל דבר? איך לראות את החיים כמשחק חשיבה? איך ללמוד מכל דבר? איך לראות את החיים כחידת היגיון? איך לפתח את השכל? איך לא להשתעמם? איך ליהנות מכל דבר? איך להפוך פעולות יומיומיות לתרגילי חשיבה? כדי לפתח את המוח, להיות יותר חכם, למצוא עניין בכל דבר ולראות את החיים כמשחק של חידות היגיון, אליעד כהן מסביר כיצד אפשר לשנות את הגישה שלנו לפעולות יומיומיות רגילות, ולהפוך אותן להזדמנות לפיתוח השכל והחשיבה. ... הזו מובילה לחיים משעממים ונטולי עניין. הדרך השנייה, שאליעד מציע, היא לראות כל פעולה בחיים כתרגיל חשיבה, כמשחק חשיבה וכחידת היגיון. גישה זו גורמת לכך שאדם ישאל את עצמו בכל פעולה מהן הדרכים השונות לבצע אותה, מה היתרונות והחסרונות של כל דרך, ומה הדרך הטובה ביותר לבצע את המשימה. איך הופכים את החיים לחידות היגיון ומשחק חשיבה? אליעד נותן דוגמאות רבות כיצד אפשר להפוך כל פעולה רגילה בחיים להזדמנות לפיתוח השכל: אם אדם ... מה היתרון של כל אופציה? למה הגישה הזאת הופכת את האדם לחכם יותר? הגישה שאליעד מציע, לראות בכל פעולה חידה של היגיון ומשחק חשיבה, הופכת את האדם לחכם יותר מכיוון שהיא מאמנת ומפתחת את החשיבה שלו באופן מתמיד. בדיוק ... ממנה, לא מפתחים את החשיבה שלהם, ומתייחסים אל החיים כשורה של מטלות. לעומת זאת, מי שרואה בפעולות היומיומיות משחקים וחידות, חייו מעניינים יותר, הוא מתפתח יותר, ונהנה יותר. איך אפשר ליישם זאת בפועל? ליישם זאת בפועל זה לקחת כל ... חכם יותר? איך להפוך את החיים למשחק חשיבה? איך לא להשתעמם? איך למצוא עניין בכל דבר? איך להפוך פעולות לחידות היגיון? איך להיות יותר חכם, באמצעות תרגילי חשיבה לחיי היום יום? איך אדם יכול להיות יותר חכם? מה אפשר ... יש דרך אחרת, דרך שתהפוך אותך ליותר חכם ויהפכו את חייך ליותר מעניינים. הדרך היא להתייחס לכל משימה כאל חידת היגיון. להפוך כל פעולה למשחק חשיבה במקום לראות פעולה כמשהו מעיק, ניתן להסתכל עליה כאתגר, כמשחק חשיבה. אם אתה ...
חידת LeetCode Solution - Candy, פתרון ליטקוד, LeetCode Solution, איך לפתור שאלות ב LeetCode? איך לפתור חידת LeetCode? מדעי המחשב, תכנות מחשבים, איך להתקבל לעבוד בהייטק? איך ללמוד תכנות מחשבים? איך להיות מתכנת? איך לעבור ראיון טכני? איך להתכונן לראיון עבודה בהייטק? תרגול שאלות ליטקוד כהכנה לראיון, איך להיות מתכנת מחשבים? איך לעבוד בפיתוח תוכנה? איך להתכונן לראיונות כתיבת קוד? איך לפתור חידת היגיון? חידות היגיון, איך לעבור ראיון עבודה טכני?
חידת LeetCode Solution - Candy, פתרון ליטקוד, LeetCode Solution, איך לפתור שאלות ב LeetCode? איך לפתור חידת LeetCode? מדעי המחשב, תכנות מחשבים, איך להתקבל לעבוד בהייטק? איך ללמוד תכנות מחשבים? איך להיות מתכנת? איך לעבור ראיון ... שאלות ליטקוד כהכנה לראיון, איך להיות מתכנת מחשבים? איך לעבוד בפיתוח תוכנה? איך להתכונן לראיונות כתיבת קוד? איך לפתור חידת היגיון? חידות היגיון, איך לעבור ראיון עבודה טכני? והפעם נדבר על שאלת 135. LeetCode - Candy הבאה: There are n children ... 1. חוק 2 - כל ילד עם ציון יותר גבוה, צריך לקבל יותר סוכריות מאשר כל ילד שצמוד אליו. והחידה היא, מהו מספר הסוכריות המינימלי והקטן ביותר שצריך לתת לילדים האלו? כדי ליישם את 2 החוקים הקודמים. וכמובן שעלינו ... נקודת וודאות בתוך כל האפשרויות. ולכן התחלנו לחפש בהכרח את הדירוג שאמור לקבל כמות של 1. כי זאת הוודאות היחידה האפשרית. וזה אפשרי רק היכן שאין שום מספר שגדול שצמוד למספר הנוכחי. מכאן בגרסה הראשונה, סיימנו את הסיבוב ועשינו ...
ספרים מומלצים עבורך - ספרים על חידת LeetCode Solution - Block Placement Queries, פתרון ליטקוד, LeetCode Solution, לפתור שאלות ב LeetCode, מדעי המחשב, תכנות מחשבים, לעבוד בהייטק, ללמוד תכנות מחשבים, להיות מתכנת, ללמוד לתכנת, הכנה לראיון טכני, ראיון עבודה בהייטק, שאלות ליטקוד, פיתוח תוכנה, איך לכתוב קוד? ללמוד לכתוב קוד, חידות היגיון, ללמוד לחשוב, ללמוד לנתח דברים, ללמוד לפרק לגורמים, ללמוד לחלק לחלקים, ללמוד למצוא חוקיות, איך לחלק לחלקים? איך למצוא חוקיות? לנתח תהליכים
 👈1 ב 150  👈4 ב 400     ☎️ 050-3331-331    שליח עד אליך - בחינם!
שקט נפשי אמיתי - הספר על: חידה, איך להתמודד עם הזיות / דמיונות שווא / פרנויות / סכיזופרניה / הפרעת אישיות גבולית? איך להתמודד עם ביישנות וחרדה חברתית? מועקות נפשיות וייאוש? איך להתמודד עם הפרעות קשב וריכוז? איך להתמודד עם חרדות + פחדים של ילדים? איך להתמודד עם OCD / הפרעה טורדנית כפייתית / אובססיות / התנהגות כפייתית? איך להתמודד עם טראומה ופוסט טראומה? איך להתמודד עם מאניה דיפרסיה ועם מצבי רוח משתנים? איך להתמודד עם אהבה אובססיבית? איך להתמודד עם עצבות? איך להתמודד עם בדידות? איך להתמודד עם לחץ? איך להתמודד עם פחד קהל ופחד במה / פחד להתחיל עם בחורות / פחד להשתגע / פחד לאבד שליטה / חרדת נטישה / פחד מכישלון / פחד מוות / פחד ממחלות / פחד לקבל החלטה / פחד ממחויבות / פחד מבגידה / פחד מיסטי / פחד ממבחנים / חרדה כללית / פחד לא ידוע / פחד מפיטורים / פחד ממכירות / פחד מהצלחה / פחד לא הגיוני ועוד? איך להתמודד עם התקפי חרדה ופאניקה? דיכאון? איך להתמודד עם בעיות ריכוז והפרעת קשב וריכוז? איך להתמודד עם שמיעת קולות בראש? כעס ועצבים? איך לשכוח אקסים ולא להתגעגע? איך להתמודד עם תסמינים של חרדה? איך להשיג איזון נפשי? איך להתמודד עם הפרעות התנהגות אצל ילדים? איך להתמודד עם כל סוגי הפחדים והחרדות שיש? איך להתמודד עם אכזבות? איך להתמודד עם רגשות אשם ושנאה עצמית? איך להתמודד עם חלומות מפחידים וסיוטים בשינה ועוד...

הצלחה אהבה וחיים טובים - הספר על: חידה, איך לפתח חשיבה יצירתית? איך לעשות יותר כסף? איך לשפר את הזיכרון? איך להתמודד עם אובססיות והתמכרויות? איך לדעת איזה מקצוע מתאים לך? איך לשכנע אנשים ולקוחות? איך ליצור מוטיבציה ולהשיג מטרות? איך לקבל החלטות? איך לנהל את הזמן? איך לשתול מחשבות? איך לגרום למישהו לאהוב אותך? איך לפתח יכולות חשיבה? איך לא להישחק בעבודה? איך למצוא זוגיות? איך לחשוב בחשיבה חיובית? איך לפרש חלומות? איך להעביר ביקורת בונה? איך לשנות תכונות אופי? איך להתמודד עם גירושין? איך לחנך ילדים? איך ליצור אהבה? איך להצליח בזוגיות? איך להיגמל מהימורים? איך לדעת אם מישהו מתאים לך? איך להשיג ביטחון עצמי? איך להיות מאושר ושמח? איך למכור מוצר ללקוחות? איך לטפל בהתנגדויות מכירה? איך להצליח בראיון עבודה? איך להאמין בעצמך? איך להתמודד עם דיכאון ותחושות רעות? איך להצליח בדיאטה ולשמור על המשקל? איך להעריך את עצמך ועוד...

להיות אלוהים, 2 חלקים - הספר על: איך נוצרים רצונות / מחשבות / רגשות? האם יש או אין אלוהים? איך נוצר העולם? מה המשמעות של החיים? למה לא להתאבד? האם יש אמת מוחלטת? האם יש בחירה חופשית? למה יש רע וסבל בעולם? מהי תכלית ומשמעות החיים? האם יש נשמה וחיים אחרי המוות? האם לדומם יש תודעה? האם יש חיים מחוץ לכדור הארץ ויקומים מקבילים? מה יש מעבר לשכל וללוגיקה? האם יש משמעות לחיים? האם אפשר לדעת הכל? מה יש מעבר לזמן ולמקום? האם יש הבדל בין חלום למציאות? בשביל מה לחיות? האם הכל אפשרי? איך להיות הכי חכם בעולם? מי ברא את אלוהים? האם המציאות היא טובה או רעה? האם באמת הכל לטובה? למה חוקי הפיזיקה כפי שהם? איך להיות מאושר? אולי אנחנו במטריקס? איך נוצר העולם? איך להנות בחיים? למה יש רע בעולם? למה העולם קיים? איך להשיג שלמות ואושר מוחלט ועוד...
רק כאן באתר! ✨ להנאתך, 10,000+ שעות של תכנים בלעדיים! ✨ מאת אליעד כהן!
לפניך חלק מהנושאים שבאתר... מה מעניין אותך?

חפש:   מיין:

האתר www.EIP.co.il נותן לך תכנים בנושא מורה רוחני, מאמן אישי בטלפון, אימון אישי קשב וריכוז בנושא חידה - ללא הגבלה! לקביעת פגישה אישית / ייעוץ טלפוני אישי / הזמנת הספרים - צור/י עכשיו קשר: 050-3331-331
© כל הזכויות שמורות לאתר www.EIP.co.il בלבד!
מומלץ ביותר, לצטט תוכן מהאתר במקומות שונים,
ובתנאי שתמיד יצורף קישור לכתובת שבה מופיע התוכן המקורי ולאתר.
האתר פותח על ידי אליעד כהן
דף זה הופיע ב 0.3750 שניות - עכשיו 02_09_2025 השעה 10:53:00 - wesi1